热电制冷应用(热电制冷原理图)
1. 热电制冷原理图
热能制冷是利用珀尔帖效应的原理进行制冷的,其制冷效果主要取决于两种电偶对材料的热电势。由于半导体材料具有较高的热电势,因此,可以用它来做成小型的热电制冷器。
由于热电制冷器不需要介质,又无机械运动部件,可靠性高,并可以逆向运转,在电子设备或电子元器件的热控制方面得到了比较广泛的应用。一、热电制冷的基本原理当任何两种不同的导体组成一电偶对,并通以直流电时,在电偶的相应接头处就会发生吸热和放热现象。
2. 热电制冷原理图片
供热采暖系统的原理是:
低温热媒在热源中被加热,吸收热量后,变为高温热媒(主要形式是高温水或蒸汽),经热媒输送管道送往住宅室内,通过散热设备放出热量,使室内的温度升高;散热后温度降低,变成低温热媒(低温水),再通过回收管道返回热源,进行循环使用。如此不断循环,从而不断将热量从热源送到室内,补充室内的热量损耗,使室内保持一定的温度。
3. 热电制冷系统
热电材料发电利用的是将热能和电能相互转换的功能材料,所以若能大幅度提升这些热电材料的效率,将对广泛用于露营的手提式致冷器,太空应用和半导体晶片冷却等产生相当重要的影响。
家庭与工业上的冷却将因热电装置无运动的部件,是坚固的,安静的,可靠的,且避免使用会破坏臭气层的含氯氟碳氢化合物。
热电材料需要有高导电性以避免电阻所引起电功率之损失,同时亦需具有低热传导系数以使冷热两端的温差不会因热传导而改变。
4. 热电制冷的基本原理
原理上,半导体制冷片是一个热传递的工具。当一块N型半导体材料和一块P型半导体材料联结成的热电偶对中有电流通过时,两端之间就会产生热量转移,热量就会从一端转移到另一端,从而产生温差形成冷热端。但是半导体自身存在电阻当电流经过半导体时就会产生热量,从而会影响热传递。而且两个极板之间的热量也会通过空气和半导体材料自身进行逆向热传递。当冷热端达到一定温差,这两种热传递的量相等时,就会达到一个平衡点,正逆向热传递相互抵消。此时冷热端的温度就不会继续发生变化。为了达到更低的温度,可以采取散热等方式降低热端的温度来实现。
风扇以及散热片的作用主要是为制冷片的热端散热。通常半导体制冷片冷热端的温差可以达到40~65度之间,如果通过主动散热的方式来降低热端温度,那冷端温度也会相应的下降,从而达到更低的温度。
当一块N型半导体材料和一块P型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N型元件流向P型元件的接头吸收热量,成为冷端;由P型元件流向N型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P的元件对数来决定,以下三点是热电制冷的温差电效应。
5. 热电制冷器的控制方法及控制装置
溴化锂制冷机是利用不同温度下溴化锂水溶液对水蒸汽的吸收与释放来实现制冷的,这种循环要利用外来热源实现制冷,常用热源为蒸汽、热水、燃气、燃油等。由于溴化锂制冷机具有许多独特的优点,近年发展十分迅速,特别是在空调制冷方面占有显著的地位。那么溴化锂制冷机的应用是否有利于提高一次能源的利用率,是否节能,在何种情况下节能,冷热源是否选用吸收式制冷机,一直是人们争论的焦点。溴化锂制冷机在实际中的应用及其使用寿命的长短直接关系到实际工程的经济效益。
溴化锂以热能为动力源,以水为制冷剂,以溴化锂溶液为吸收剂,制取冷源水,称为溴化锂制冷机。其热源主要有蒸汽、热水、燃气和燃油等,可分为直燃型、蒸汽型和热水型。蒸汽型机组主要用在有蒸汽可以利用的场合,如城市集中供热热网、热电冷联供系统、纺织、化工、冶金等行业;热水型机组,可利用65℃以上的热水,如地热、太阳能热能、工业领域工艺过程产生的余热热水制取冷水。直燃型机组可利用燃气为宾馆、医院、写字楼、机场等大型建筑物提供空气调节。由于是以热制冷,溴化锂制冷机还可以利用工业废余热,为工业提供工艺所需冷水或空调。
溴化锂制冷机以其可利用低品味的热能、所需电功率小、制冷剂为水以及溴化锂溶液对环境不构成破坏等特点在中央空调领域独树一帜,为满足我国严重缺电时期的空调用冷需求而受到了政府、电力部门的鼓励。自八十年代末以来,我国的溴化锂空调生产商已超过100家,其产品的制造水平和产量仅次于日本而位居世界前列。
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.