有机半导体制冷器材(有机半导体器件)
<h2>1. 有机半导体器件</h2><p>半导体器件四种基础结构:1.金属-半导体界面;2.p-n结;3.异质结界面;4.金属-绝缘体-半导体结构。</p><p>1)元素半导体。元素半导体是指单一元素构成的半导体,其中对硅、硒的研究比较早。它是由相同元素组成的具有半导体特性的固体材料,容易受到微量杂质和外界条件的影响而发生变化。</p><p>目前, 只有硅、锗性能好,运用的比较广,硒在电子照明和光电领域中应用。硅在半导体工业中运用的多,这主要受到二氧化硅的影响,能够在器件制作上形成掩膜,能够提高半导体器件的稳定性,利于自动化工业生产。</p><p>(2)无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物,但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。</p><p>这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。</p><p>(3)有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。</p><p>这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。</p><p>(4)非晶态半导体。它又被叫做无定形半导体或玻璃半导体,属于半导电性的一类材料。非晶半导体和其他非晶材料一样,都是短程有序、长程无序结构。它主要是通过改变原子相对位置,改变原有的周期性排列,形成非晶硅。</p><h2>2. 有机半导体器件有哪些</h2><p>常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体分为二元系、三元系、多元系和有机化合物半导体。二元系化合物半导体有Ⅲ-Ⅴ族(如砷化镓、磷化镓、磷化铟等)、Ⅱ-Ⅵ族(如硫化镉、硒化镉、碲化锌、硫化锌等)、 Ⅳ-Ⅵ族(如硫化铅、硒化铅等) 、Ⅳ-Ⅳ族(如碳化硅)化合物。三元系和多元系化合物半导体主要为三元和多元固溶体,如镓铝砷固溶体、镓锗砷磷固溶体等。有机化合物半导体有萘、蒽、聚丙烯腈等,还处于研究阶段。此外,还有非晶态和液态半导体材料,这类半导体与晶态半导体的最大区别是不具有严格周期性排列的晶体结构</p><h2>3. 有机半导体材料与器件</h2><p>有机半导体由有机分子组成,特殊的结构使其具有导电性。</p><h2>4. 有机半导体器件的特点</h2><p>半导体材料(semiconductormaterial)是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。</p><h2>5. 有机半导体器件电容性质的研究</h2><p >半导体材料的光电应用很大程度上取决于材料的介电函数,介电函数是表征材料折射率,吸收率,电导率,电容等的基本特性。</p><p>迄今为止,对半导体材料光学性质的研究大多数都集中在可见光和近红外波段,而在太赫兹(thz)波段对其介电性能的研究则相对很少。随着许多电子和光子器件的工作频率从ghz上升到thz范围,thz波段的介电响应研究变得越来越重要。作为传统光电检测技术的补充措施,太赫兹时域光谱(thz-tds)能够检测半导体在thz波段的介电特性,包括其复折射率和复介电函数。</p><h2>6. 有机半导体器件是什么</h2><p>一、概念不同</p><p>1、导体</p><p>导体(conductor)是指电阻率很小且易于传导电流的物质。导体中存在大量可自由移动的带电粒子称为载流子。在外电场作用下,载流子作定向运动,形成明显的电流。</p><p>2、半导体</p><p>半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。</p><p>二、分类不同</p><p>1、导体</p><p>1)第一类导体</p><p>金属是最常见的一类导体。金属中的原子核和内层电子构成原子实,规则地排列成点阵,而外层的价电子容易挣脱原子核的束缚而成为自由电子,它们构成导电的载流子。</p><p>2)第二类导体</p><p>电解质的溶液或称为电解液的熔融电解质也是导体,其载流子是正负离子。实验发现,大部分纯液体虽然也能离解,但离解程度很小,因而不是导体。</p><p>3)其他导电介质</p><p>电的绝缘体又称为电介质。它们的电阻率极高,比金属的电阻率大1014倍以上。绝缘体在某些外界条件(如加热、加高压等)影响下,会被“击穿”,而转化为导体。绝缘体或电介质的主要电学性质反映在电导、极化、损耗和击穿等过程中。</p><p>2、半导体</p><p>半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物)。</p><p>以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。</p><p>三、特性不同</p><p>1、导体</p><p>1)热敏特性</p><p>半导体的电阻率随温度变化会发生明显地改变。</p><p>2)光敏特性</p><p>半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。</p><p>3)掺杂特性</p><p>在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。</p><p>2、半导体</p><p>半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。</p><p>1)在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。</p><p>2)在光照和热辐射条件下,其导电性有明显的变化。</p>
本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.