当前位置:首页 > 解决方案 > 工业 > 正文内容

热学制冷循环实验(热学制冷循环实验数据)

2023-02-20 20:44:05工业1

1. 热学制冷循环实验数据

热能工程、动力工程、空调与制冷等。

本专业培养德、智、体全面发展的具有一定科研能力和创新能力的高级工程技术人才。学生在校期间获得热能动力工程有关设备运行和管理的基本训练,掌握本专业必需的基础理论、专业技术和热能动力设备的运行、维护和管理的知识,并具有较高的计算机应用能力和外语基础。

2. 热学制冷循环实验实验报告

低温物理学,又称低温学,是物理学的分枝,研究物质在低温下的物理现象的学科,有时也包括低温的获得和它的测量技术。而低温物理学的低温定义为−150°C, −238°F,123K或以下的温度。   

低温物理学——是一门在低温条件下研究物质的物理性质的学科 。

所谓低温通常是指低于液氮温度(77K) ,而更多更重要的低温现象则发生在液氦温度(4.2K)以下。使空气、氢气和氦气液化的技术,以及各种超低温技术的发展(见超低温技术),使人们获得了极低温和超低温的实验条件。在低温下物质的热学、电学和磁学性质均会发生巨大改变。

例如固体比热容在某些温度下会突变;在足够低的温度下,原则上所有顺磁物质均可表现出铁磁性或反铁磁性(见磁介质);金属的导电性明显提高,而半导体的导电性则大大降低。这些现象均与低温下的量子力学效应有关。

  1908年H.卡末林 - 昂内斯首次实现了氦气的液化。液态氦当温度低于入点后从HeⅠ相转变为HeⅡ相,HeⅡ相具有超流动性,粘滞系数变为零,可无阻地通过毛细管,同时其热导率大大增加,约为入点以上温度时的3×106倍。

1911年昂内斯首次发现一些金属在极低温度下呈现零电阻现象,称为超导电性 。

1933 年 W.迈斯纳发现超导体具有完全抗磁性 ,体内磁场恒为零(见超导电性)。

此外,在超导临界温度处超导体的比热容发生突变,超导态不存在温差电现象,等等。超流动性和超导体的这些奇异现象均与低温下的宏观量子现象密切相关,并均来源于低温下发生的某种有序化转变。对超流动性和超导电性的研究大大深化了人们对物质世界所循规律的认识 ,故一 直是低温物理学的研究重点 。

对液态3He 和4He的性质的研究导致了新的致冷手段( 稀释致冷机 )的出现。对超导体各种性质及其应用的研究形成了超导物理学这一分支学科。以约瑟夫森效应为基础的超导器件的研究和应用形成了超导电子学这一新学科。

1986年以后对高临界温度超导材料的研究和探索为超导应用展现了广阔前景。   物理学家不断寻找临界转变温度更高的超导材料,高温超导纪录不断被刷新。目前,高温超导已经成为凝聚态物理学中最热门的研究领域之一。

3. 制冷循环演示实验数据

1)理论循环假定:

①压缩过程是等熵过程;②节流过程是等焓过程;③冷凝器内压降为零,出口为饱和液体,传热温差为零,蒸发器内压降为零,出口为饱和蒸汽,传热温差为零;④工质在管路状态不变,压降温差为零。2)区别:

①实际压缩过程是多变过程;②冷凝器出口为过冷液体;③蒸发器出口为过热蒸汽;④冷凝蒸发过程存在传热温差tk=t+Δtk,to=t-Δto。

4. 热学制冷循环实验数据处理答案

焓,就是热力学里面一个状态参量,空气中的焓值的话指的就是空气里面的总热量,通常以干空气的单位质量为基准,称作比焓。

焓值常用符号H表示。对一定质量的物质,焓定义为H=U+pV,式中U为物质的内能,p为压强,V为体积。

热力学主要是从能量转化的观点来研究物质的热性质 ,它提示了能量从一种形式转换为另一种形式时遵从的宏观规律,总结了物质的宏观现象而得到的热学理论。

热力学并不追究由大量微观粒子组成的物质的微观结构,而只关心系统在整体上表现出来的热现象及其变化发展所必须遵循的基本规律。它满足于用少数几个能直接感受和可观测的宏观状态量诸如温度、压强、体积、浓度等描述和确定系统所处的状态。

5. 制冷(热泵)循环实验

热能与机械能之间的转换一般是通过工质在相应的热力设备中进行不断循环来实现。工质从某一初始状态历经加压、加热、膨胀以及冷却等过程后又回复到初始状态,称为工质经历了一个热力循环。

吸收热量并能够输出功的循环叫做动力循环或热机循环,消耗功量把热量从低温物体转移给高温物体的循环称为制冷循环或热泵循环。

根据热机循环的具体过程不同,热机循环分别有卡诺循环、斯特林循环、郎肯循环、回热循环、布莱登循环、狄塞尔循环、萨巴特循环、奥托循环等。

问:火力发电厂主要使用哪些热力循环?

答:尽管卡诺循环具有最高的循环效率,而且循环效率与工质的性质无关。但是实际的热力循环总是与工质的性质密切相关,而且为了生产的需要,循环工质需要具有以下几个主要特征:便宜易得、无毒无害、汽化潜热大、化学性质稳定等,考察目前所能得到的循环工质,水蒸气是最符合上述特点的一种,所以火力发电厂所用的热力循环一般采用水蒸气作为循环工质。根据水蒸气动力循环的特点,蒸汽动力循环分为朗肯循环和回热循环。

朗肯循环是指冷水被加压后进入锅炉设备产生蒸汽,推动汽轮机发电,发电后的乏汽被冷却水冷凝后再次被加压泵加压进入下一个循环,为了提高循环效率,蒸汽在做功过程中还可以被再热。目前朗肯循环一般用于余热发电中,大型火力发电厂很少采用。

回热循环是指凝结水并不直接进入锅炉设备中加热,而是经过汽轮机的多级抽汽被逐级加热后再进入锅炉产生蒸汽,驱动汽轮机发电。与朗肯循环相比,由于给水被汽轮机抽汽逐级加热后,温度提高,进入锅炉设备后相当于吸热温度提高,所以循环效率提高。

6. 热学制冷循环实验思考题

制冷循环的热力过程是氨压缩机、冷却器、调节阀、蒸发器等组成的循环密闭系统中进行,氨液通过调节阀降低压力进人蒸发器后,吸收被冷却介质的热量而蒸发,使介质温度降低,达到制冷的目的;蒸发的氨气被压缩机吸 回,经压缩排人冷却器,使氨气降温凝为氨液。一个完整的制冷系统,一般由压缩机、冷凝器、储氨器、油分离器、节流阀、 氨液分离器、蒸发器、中间冷却器、紧急泄氨器、集油器、各种阀门、压力表和高低压管道组成 。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:http://www.lengcanghe.com/jjfa/gy/98758037.html